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Convection in a saturated porous medium at large 
Rayleigh number or Pdclet number 

By R. A. WOODING 
Applied Mathematics Laboratory, D.S.I.R., Wellington, New Zealand 

(Received 18 June 1962 and in revised form 23 October 1962) 

When the dimensions of a convective system in a saturated porous medium are 
sufficiently great, diffusion effects can be neglected except in regions where the 
gradients of fluid properties are very large. A boundary-layer theory is developed 
for vertical plane flows in such regions. In  special cases, the theory is equivalent 
to that for laminar incompressible flow in a two-dimensional half-jet, or in a 
plane jet or round jet, for which similarity solutions are well known. 

A number of experiments have been performed using a Hele-Shaw cell im- 
mersed in water, with a source of potassium permanganate solution located 
between the plates. At very small values of the source strength, a flow analogous 
to that of a plane jet from a slit is obtained. The distance advanced by the jet 
front, or cap, is measured as a function of time, and the velocity is found to be 
nearly proportional to the velocity of the fluid on the axis of the steady jet 
behind the cap, as given by the similarity law of Schlichting and Bickley. At 
large values of the source strength, a two-dimensional ‘broad jet ’ of homogeneous 
solution descending under gravity is produced; the shape of the flow region can 
be calculated with little error from potential theory, neglecting the effect of the 
mixing layers. 

A possible example of a mixing layer observed in a geothermal region is 
examined. The theoretical form of the temperature distribution is calculated 
numerically, taking into account the large viscosity variation with temperature 
and also the possibility of a large permeability variation. These effects are found 
to have less influence upon the solution than might have been expected. Quanti- 
tative values obtained for the physical parameters are consistent with other 
geophysical observations. 

1. Introduction 
In  the steady motion of ground water under non-isothermal conditions, or 

of ground water with other non-homogeneous physical properties, the macro- 
scopic length scale of the system may be so great that diffusion effects can be 
considered negligible. An approximation of this type was made by Yih (1961) 
who showed that, in the absence of differential buoyancy effects, the flow 
problem for a non-homogeneous fluid could be transformed into an equivalent 
potential problem for a homogeneous fluid. Yih also obtained solutions by inverse 
methods for two-dimensional flows which included significant buoyancy effects. 
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This paper is concerned with the properties of steady vertical convection from 
a source of heat or of heated fluid in a saturated porous medium when the 
Rayleigh number or the PBclet number exceeds O(10). The effects of thermal 
diffusion are important only in zones of mixing between fluids at different tem- 
peratures, and here the nature of the fluid motion is such that boundary-layer 
approximations are valid. Flows of this type might be found in geothermal 
areas, or might arise from the heat generated by deep explosions in saturated 
ground. 

The treatment will be limited to two-dimensional flows, taking the flow-plane 
(x, y) vertical, with the x-axis directed vertically upwards. The medium will be 
assumed isotropic, with constant porosity, but in certain cases the permeability 
may vary with temperature. Let the fluid be incompressible, changing volume 
only as a result of changes in temperature; from the Boussinesq approximation, 

where p and T are the density and Absolute temperature, po is the density at a 
reference temperature To, and a is a constant. The components of the flow- 
vector in the x- and y-directions will be designated u* and v*; however, it  is 
convenient to introduce a ‘modified flow vector’ (u, v )  which is defined by the 
relation (pea, pov) = (pu*,pv*). Then the steady-state equations of continuity, 
motion (Darcy’s law) and heat transport become 

au av 
ax ay 
-+- = 0, 

lap 
+-v = 0, !,aB,- k (4) 

where k is the permeability, v = v(T)  is the kinematic viscosity, P is the pressure, 
and g is the acceleration due to gravity. In  equation ( 5 ) ,  the longitudinal and 
transverse diffusivities K~ and K, are defined by K~ = K,/p,c and K~ = K,/poc,  
where c is the specific heat of the incompressible fluid and K,  and K,  are coeffi- 
cients involving the thermal conductivity of the saturated medium combined 
with the effects of longitudinal and transverse mechanical dispersion. 

The above equations hold also for an isothermal fluid containing dissolved 
material, provided that T represents the concentration of solute, (a, w) is identical 
with (u*, v*) (i.e. fluid dilatation effects are negligible), K~ and K, are the longi- 
tudinal and transverse components of the effective dihsivity of solute through 
the fluid saturating the porous medium, and provided that v is replaced by p/po, 
where ,u is the dynamic viscosity. 

For this latter case, the work of Saffman (1960) shows that equation ( 5 )  is 
valid when the PBclet number of the flow, based upon pore size and molecular 
diffusivity, does not exceed O(1); the effect of transverse dispersion is then 
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small. In the present paper, it  will be assumed that a similar approximation can 
be made for the non-isothermal problem, where the P6clet number is defined in 
terms of pore size and the thermal diffusivity of the saturated medium. The 
PBclet number will then be taken small, so that K~ can be replaced in (5) by the 
thermal (or effective molecular) diffusivity K ,  which is assumed constant. 

TI 

-2211- 

Fluid 1 

2. Equations of the flow at a mixing layer 
The geometrical parameters of a simplified mixing-layer problem are defined 

as shown in figure 1. Two impermeable and thermally-insulating partitions 
AC and BD, spaced a distance 2d apart, separate a heated fluid 1, of uniform 
temperature T,, from a fluid 0, of uniform temperature To. It is assumed that 
the motion is due only to buoyancy effects and a uniform externally applied 
vertical pressure gradient (implying that horizontal boundaries exist above and 
below the region of interest), so that the flow-rate vectors of magnitudes U ,  
and Uo are vertical. 

B 
To 

D Fluid 0 

FIGURE 1. Formation of plane mixing layers between a fluid 1, of temperature TI, which 
is rising with a flow rate U ,  through a fluid 0 of temperature To and vertical flow rate U,. 

For each of the ‘thin’ mixing layers above the points A and B in figure 1, the 
length scales in the x- and y-directions can be taken to be O ( L )  and O(LS),  where 
6 2  < 1. From the equation of continuity (2), v/u = O(S) ; hence (4 )  can beintegrated 
approximately to give 

where Po, the pressure in fluid 0, satisfies the equation 

( P -  Po)/po = O(vuLS2/k),  (6) 

l d P o  v p,dz = -zUo-g. (7 )  

Equation (6) provides a measure of the total pressure change in passing through 
the mixing layer from fluid 0 to fluid 1. 

If (l), (3), (6) and (7 )  are now combined to eliminate P, Po and (p-po) /po,  
there results flU(1 +O(d2)} = UO+(kOgol/vO) ( T - T O ) / T 0 7  (8) 

where (9) 

Thus the equations of motion (3) and (4) may be replaced by the approximate 
equation (8), neglecting the small term of order S2. 

34 Fluid Mech. 15 
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As a further consequence of the boundary-layer assumption, the transport 
equation (5) can be replaced by 

u a q a x  + aT/ay = a 2 T l a y 2  (10) 

provided that the ratio a2K,/K < 1. Elimination of T between (8) and (10) gives 

which is to be solved in conjunction with the equation of continuity (2) and a 
relation for cr, which is assumed known. From figure 1, the boundary conditions 
for the system are 

using (8). 
A two-dimensional stream-function @ can be defined from (2) in the usual way. 

u = a@-jay, v = -agjax. (13) 

Then the transformation of von Mises (1927) can be applied to (ll),  giving 

In  Q 5, some use is made of the equations (14) to obtain numerical solutions of 
a mixing-layer problem. 

Conditions for the validity of the approximations 
Since the terms on both sides of equation (10) must be of the same order of 
magnitude in the mixing layer, it  is necessary that 

K/L262 = O(U,/L), i.e. 6 = O(K/U,L)+. (15) 

The velocity scale is here defined in terms of U,, assuming that U, > Uo 2 0, 
since the motion relative to the fixed points A and B (figure 1) is being considered. 
When the condition S2 < 1 is applied to (15), using (12) to eliminate U,, the result is 

A necessary condition for the boundary conditions (12) to hold is that both U, 
and Uo should remain constant for all x. From figure 1, this condition can be 
satisfied provided that the two mixing layers do not merge together, i.e. provided 
that d > L6. This gives 

> 1. 
V,K To L V,KL (17) 

If L is increased indefinitely, condition (17 )  must ultimately fail to hold; the 
mixing layers begin to merge, and the distributions of temperature and velocity 
approach those due to a point source of heat (cf. Q 3). 
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In  each of the conditions (16) and (17), the quantity within the modulus con- 
sists of two terms, the first defining a Rayleigh number and the second a PBclet 
number. The two Rayleigh numbers 

are associated with free convection of fluid 1 through fluid 0, while the PBclet 
numbers are associated with wake-like flows due to the forced convection of the 
entire body of fluid under an applied vertical pressure gradient. 

3. Solutions for vertical flows 
Two special situations can arise in which the variable quantity u, defined in 

(9), can be taken identically equal to 1. First, the permeability k may be a linear 
function of the kinematic viscosity v, where v varies with temperature; this case 
could be of geophysical significance (9 5 ) .  Secondly, variations in k and v may be 
small enough to be neglected. 

When u = 1, equations (11) and (2) are completely equivalent to the equations 
of laminar incompressible flow past a flat plate at zero incidence, or of a similar 
flow in a jet. Several well-known examples of jet flow are directly applicable. 

Vertical mixing layer 

The boundary conditions (12), illustrated in figure 1, correspond to the problem 
solved by Gortler (1942) for the laminar mixing of two uniform streams of in- 
compressible fluid (see also Pai 1954). Following Gortler, one can fix the zero 
point of y by putting u(x,  0) = +(U, + Uo), and obtain a series solution in powers 
of (U, - Uo)/(U, + U,), the coefficients of which are evaluated by numerical 
integration. The first two terms of Gortler’s series give 

where 

This approximate result is valid if (U, - Uo)/( U, + U,) is small. 

Convection from a line source 

Suppose that an unbounded porous medium, saturated with a fluid of temperature 
To at rest under gravity, contains a horizontal line source of heat, of strength 
Q erg/cm sec. The origin of co-ordinates is taken at the line source, with the (x, y)- 
plane normal to it, the x-axis being directed vertically upwards. 

Equations (11) and (2) are applicable, with u = 1. For the boundary con- 
ditions, &/i3y = v = 0 at y = 0 by symmetry, while u + 0 as IyI -+ 00. Further, 
since the system is in a steady state, the total vertical heat flux per unit length 
of source, a t  any given value of x > 0, must be equal to the source value. 

m 

Q = 1 Jcp(T - ?o) u*dy = JcpoTo 

34-2 
- m  
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where the symbol J denotes the mechanical equivalent of heat. If use is made 
of (S), the following expression for ‘kinematic heat flux’ Q‘ is obtained: 

Thus the problem is equivalent to  that of the plane laminar incompressible 
momentum jet, solved by Schlichting (1933) and Bickley (1937) using boundary- 
layer theory. The similarity solution, quoted by Schlichting (1960), is 

(20) 

and the boundary-layer theory is valid provided that Q’z/K~ is large. For the 
total rate of fluid mass flow M across any horizontal section of the convection 

i u = $(&I3 (Q’~/Kx)* sech2 c, 
v = $(A)* ( Q ’ K / ~ ~ ) *  ( 2 t  sech2 c - tanh 0, 

where < = +(&)J ( & ’ / K ~ X Z ) ~  y, 

column, W 

M = /:mpu*dy = p o /  --a, udy = 4(&)9p0(Q’~x)*. (21) 

Convection from a point source 

For the axially-symmetric flow arising from a point source of heat, the equation 
of continuity (2) is replaced by 

w 4 / a x  + x!/v)/ay = 0, 

where y is now the distance from the vertical x-axis, and the right-hand side of 
(11) is replaced by K Y - ~  a{y8(au)/i3y}/ay. It can easily be shown that the solution 
for the case a = 1 is equivalent to the boundary-layer solution for the circular 
laminar incompressible jet (Schlichting 1933, 1960). 

4. Experiments using a Hele-Shaw cell 
The theory of Hele-Shaw flow of a homogeneous fluid has been summarized 

by Lamb (1932, 0 330). If rectangular co-ordinates are taken in the plane of a 
cell sloping a t  an angle p to the horizontal, with the x-axis directed down the line 
of greatest slope, the fluid velocity averaged across the space between the plates 
at a given point is 

(22) 

Here P is the pressure, p and ,u are the constant density and viscosity, h is the 
spacing between the plates, and gsinp is the gravity component in the plane 
of the cell. Equation (22) corresponds to a two-dimensional flow of homogeneous 
incompressible fluid through a porous medium of permeability k, = h2/12p. 

A brief discussion of Hele-Shaw flow involving non-homogeneous fluid has 
been given elsewhere (Wooding 1960), where it is assumed that, if the mean- 
velocity components are slowly-varying functions of x and y, then the equation 
of continuity ( 2 )  and equations of motion of the form (3) and (4) still hold. 
Further, it  is stated that an equation analogous to (5) with K~ = K~ = const. = K 

applies for the mass transport in the Hele-Shaw cell provided that ( 2hw/K)2 < 210, 
where w is the magnitude of the mean velocity. 

(u ,v )  = (h2/12,u) @/ax, a/ay) (-P+gpxsinP). 
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Experimental method 

A Hele-Shaw cell was constructed from two sheets of in. thick plate glass, each 
30 x 20 cm, which was spaced at  the corners by means of pieces of thin strip steel 
and clamped. In  that way, a nearly uniform spacing of 0.351 mm was obtained 
between the glass sheets. The effective permeability of the cell was therefore 
k, = (0.0351)2/12 = 1.03 x lO-*cm2. The clamped assembly was mounted at an 
inclination p of 10" to the horizontal (figure 2(a ) )  in a glass aquarium tank filled 
with water. Except at the spacer locations, the interior of the cell was acces- 
sible to tank water at  all points along the edges. 

FIGURE 2 .  (a)  Side view and ( b )  plan view of the experimental arrangement. A rectangular 
Hele-Shaw cell was mounted, at an angle p to the horizontal, in a glass aquarium tank 
filled with water; a capillary-tube source was located at S. 

To provide a source of small dimensions inside the cell, a fine glass capillary 
tube was mounted at the upper end of the cell (figure 2 ( b ) )  to project into the space 
between the glass sheets to the source-point S. Fluid was supplied to the capillary 
tube from a reservoir which could be raised or lowered to vary the source strength. 
The source fluid was a potassium permanganate solution of density 1.0041 times 
that of water at the same temperature (about 18 "C). Thus the source fluid flowed 
downhill through the cell, in the direction of increasing x.  At the given con- 
centration of solution the molecular diffusivity K of the potassium perman- 
ganate was about 0.5 x cm2/sec (Furth & Ullman 1926), while the viscosity 
was only slightly above that of water-approximately 10W poise. 

Plane jet from a virtual line source 

This was formed in the experimental apparatus by using a very slow volume 
flow rate q of potassium permanganate solution-of order 0.1 c.c./h. The fluid 
mass flow rate Ms at the source and the solute mass flow rate Q were determined 
from the measured values of q and the solute concentration of the source fluid, 
i.e. 

Hs = ( ~ i q / 2 h )  g/cmsec and Q = {(pi-po)/pi)Msg/cmsec, (23) 

where p1 is the density of the source fluid and po is the density of water. 
Since the source supplied both fluid and dissolved material, instead of dissolved 

material alone as required by the theory of 3 3, it was necessary to assume that 
the jet behaved as though it arose at a 'virtual line source' located at a distance 
1 (say) behind the actual source. Thus the co-ordinates of the actual source were 
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(I, 0) ,  for an origin taken at the virtual source. The value of I was calculated from 
(2  1) and the expression for the ‘kinematic flux of solute ’ 

Q’ = (k,gsinP/~) Q (24) 

analogous to (19). These expressions show that I oc Ni.  
In  each of three experiments at different values of the source strength, the 

jet was ‘started ’, and the distance z from the actual source to the leading edge 
of the advancing jet ‘cap ’ (cf. Turner 1962) was measured as a function of time. 
The experimental parameters are given in table 1, while figures 3, (a)  to (d), 
plate 1, shows four stages in the development of a jet for which 

approximately. 
Q‘ = 5 x cm3 sec-2 

Expt no. ... ... ... 

Ms (g/cm see) 
Q (g/cmsec) 

Source strength q (c.c./h) 
Initial rate of descent (cm/h) 

Q‘ (cm3/sec2) 
(em) 

1 

0.08 
8.5 

2.6 x 

0.3 

0.6, x 10-3 

4.5, x 10-6 

2 3 

0.12 0.14 
10 14.5 

0.9, x 10-3 1.1, x 10-3 
4.5, x 10-6 

6.8, x 8.0 x 10-6 
0.7 0.9, 

3.9 x 10-6 

TABLE 1. Values of the parameters for three experiments on the convection 
column in a Hele-Shaw cell analogous to a plane ‘starting jet’. 

Now, as a test of the form of the similarity solution (20) for the convective 
flow from a line source, it is useful to assume that the shape and size of the jet 
cap relative to the steady jet behind it remains similar for all x, where x is taken 
to be the distance from the virtual source to the front of the steady jet column, 
excluding the cap (cf. Turner 1962, p. 362). This is fairly apparent from figure 3, 
where the measured width of the cap is found to increase as 2% approximately. 
It then follows that the velocity of advance of the steady jet front should be a 
constant fraction of the steady-state axial flow rate (u, say), i.e. if t denotes time, 

dx/dt = CU, = C+(&)% (Q’/Kx)* 

from (20), where C is a numerical constant. Integration of this expression gives 

x = $Q’4K-)($Ct)g. (25) 

Let the distance from the virtual source to the leading edge of the jet cap be 
z + b ( = z + I), where b is the length of the cap. From the similarity assumption, 
using (20) and (25), 

in which .& is a second numerical constant. Equation (26) shows that the con- 
tribution b due to the jet cap, relative to the total measured length z + I = x + b, is 

b = !&/(+(&)* ( Q ’ / K ~ x ~ ) + )  = Cc(8CKt)*, (26) 

b/ (x  + b )  = (1 + (&-[&’X/K2])*/3&]-’. (27) 

In  5 3, it has been noted that &‘x/K~ must be large. From an inspection of figure 3 
and from previous work (Turner 1962, p. 364) it appears that Cc = O(1). If 
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&’ = 5 x 10W cm3/sec2 (cf. table l), K = 0.5 x 10-5cm2/sec, and if tC w 1, it is 
found that b / ( x + b )  FZ l /( l+l6x$, where 5 is measured in cm; hence, as x 
becomes large, the measured quantity z + I tends to x. 

In  figure 4, values of lO-S(z + Z)/&’4 calculated from the experimental data 
are plotted against time. The points obtained from the three experiments 
apparently tend to the same limit-a straight line of slope 2 in logarithmic 
co-ordinates-which agrees with (25) provided that C M 0.33. 

‘i 5 

0.1 0.2 0.3 0.4 0.5 1 2 3 4 5  
Time (h) 

FIGURE 4. Values of (z  + Z)/&’* ‘us elapsed time from table 1 for three experiments on 
the analogue of a plane jet. 0,  Exp. 1; +, exp. 2; m, exp. 3 (cf. table 1). 

In the experimental work, it was found that an appreciable length of time was 
required for the jet front to pass beyond the local influence of the non-ideal source. 
The initial distribution of denser fluid about the source would resemble a cir- 
cular bubble, of excess density pI -po,  for which the rate of descent under 
gravity would be &j(khgsinP/,u) (pl -po) (Taylor & Saffman 1959). Substitution 
of the appropriate numerical values gives an initial rate of descent of about 
13 cm/hour, in reasonable agreement with the observed values listed in table 1. 

Broad jet 

At sufficiently large values of the source strength, a ‘broad jet’ tending to a 
constant width was obtained (figure 5, plate 2 ) ,  and the fluid rose a finite dis- 
tance up the cell, forming a stagnation point above the source. Inside the jet, the 
fluid consisted of homogeneous potassium permanganate solution, while the 
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surrounding fluid (water) was at rest except for a slow inflow due to entrainment 
into the mixing layers. 

If the mixing layers are neglected, the boundaries of the jet can be regarded 
as streamlines across which negligible pressure change occurs. The solution of 
the resulting potential problem can then be found as a limiting case of a problem 
discussed by Segedin & Miller (1962). Their equation for the boundary streamline 

(28) 
is 

jTTxI2d = log {see (my/2d)),  

where 2d is the limiting width of the jet, and the origin of co-ordinates is taken 
a t  the highest point of the jet (the stagnation point) with the x-axis directed 
down the slope of the cell. For the co-ordinates (H, 0) of the source, they obtain 

H/2d = 7 ~ - l  log 2 M 0.2206. (29) 

Points calculated from (28) are plotted in figure 5, and show that the theoretical 
boundary shape is quite closely followed by the experimental jet. The results 
of measurements of the quantity H/2d from the photographs of 11 experiments 
are given in table 2 for comparison with (29). 

2d (cm) 0.45 0.60 0-66 0.78 0.91 1.15 
H/2d 0.24 0.20 0.21 0.21 0.19 0.20 

2d (cm) 1-27’ 1.65 2,34 3.05 3.48 Mean 
HlZd 0.20 0.25 0.18 0.26 0.22 0.215 k 0.025 

TABLE 2. Values of the ratio H/2d obtained from 11 experiments at different values of 
the jet width 2d. The theoretical value of 0.2206 given in (29) lies within the limits of 
experimental crror. 

Two Rayleigh numbers can be defined for the system as follows (cf. (16‘) 

h = (khgsin,8/K,u) (pl -po)  L E IOOOL, and (17’)): 

and similarly, A’ M 1000d2/L 

if the numerical values appropriate to the experimental work are substituted. 
In  (30), L is the distance along the mixing layer from the origin, In  the experi- 
ments, measurements of the jet width were made at a level where L E 3d; thus 
the results shown in table 2 cover the ranges 700 < h < 5000 and 70 < A’ < 500, 
and the conditions (16) and (17) are satisfied. 

5. A geophysical application 
Banwell (1957) has made use of borehole temperature measurements to plot 

isothermalmapsfor a number of cross-sections in the geothermal field at Wairakei, 
New Zealand. Tracings of isotherms from three of these diagrams (figures 7, 8 
and 9 of Banwell’s paper) have been reproduced in slightly modified form in 

FIGURE 6. Isotherms for part of the Wairakei geothermal field (after Banwell 1957). 
(a )  Horizontal cross-section 50 m below the datum level, (b )  vertical cross-section inter- 
secting the horizontal section (a) along line A, and (c) vertical cross-section intersecting 
the horizontal section along line B. The two vertical cross-sections intersect along line C. 
Temperature contours are labelled in “C. 



Convection in a saturated porous medium 

0 10 
I 

- 
I 

\ 
\ 

\ 
\ 

\\ 

--- .i' 
250 200 150 100 

0 500 1OOOm 

200 
m 

0 

-- 200 

637 

(4 
For legend see facing page. 



538 R. A .  Wooding 

figure 6. Figure 6 ( a )  illustrates a horizontal cross-section at a depth of 50m 
below the datum level (taking sea-level as datum), and also shows the lines of 
the two vertical cross-sections which are illustrated in figures 6 ( b )  and (c ) .  

The vertical cross-sections indicate a region heated to temperatures in the 
vicinity of 250 "C, and separated from a region of normal temperature by a zone 
in which the isotherms are roughly vertical. It is interesting to consider the 
possibility that the flow pattern of the heated ground water possesses features 
of a vertical convection column, or 'hydrothermal jet ', into which cold ground 
water is being entrained. 

This postulated basic flow mechanism is complicated by variations in the 
geophysical properties of the system and the physical proximity of the ground 
surface. The principal disturbing features appear to be as follows: 

(i) As the hot water approaches the ground surface, the reduction of pressure 
leads to rapid steam formation with consequent loss of temperature; this is 
indicated by closely spaced, roughly horizontal isotherms below the surface. 
The effect is concentrated at the silt-stone deposits from old lake beds (shown, 
for example, in figure 6 ( b ) )  which are of relatively low permeability, and across 
which large pressure drops may be generated by the upward convective flow. 
The effect is not significant at depths greater than 400 m, i.e. below datum level. 
Since the pressure of saturated water vapour at 250°C corresponds to the 
pressure exerted by a column of cold water about 400m high, the pressure at 
greater depths is probably sufficiently great to maintain the geothermal fluid in 
liquid form. 

(ii) The sideways 'bulge' in the isotherms above the vertical mixing layer in 
figure 6 (b )  and ( c )  may arise as a result of horizontal outflow, close to the water- 
table, from the top of the vertical convection column. 

(iii) Figure 6 ( c )  shows one edge of an extensive sheet of rhyolite-a product 
of an old volcanic lava flow. From drill-core samples, it has been shown that much 
of this deposit has not undergone chemical alteration due to hydrothermal 
action, and so must be impermeable; neither have conducting fissures been found 
(A. Steiner, pers. comm.). 

(iv) The down-faulted ignimbrite shown in figure 6 (6 )  is also an impermeable 
volcanic material, but, in this case, fissures capable of conducting hydrothermal 
fluid may have been produced by faulting. 

The deposits described in (iii) and (iv) may perhaps be regarded as imperme- 
able blocks embedded in an extensive pumice breccia (fractured pumice) which 
exhibits a finite 'bulk permeability'; the total depth of volcanic debris is at 
least 3km (Studt & Modriniak 1959). 

Physical purumeters 

An estimate of the bulk permeability within the Wairakei geothermal region can 
be obtained from the measured discharge rate of heat a t  the ground surface 
(excluding geothermal bores) which is about 1.6 x 10sg cal/sec relative to 15 "C 
(Thompson, Banwell, Dawson & Dickinson 1961). Consider the convective heat 
flow across the horizontal plane of figure 6 (a). It will be assumed that the pre- 
dominant heat-transport mechanism is vertical convection, and that the 
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quantity of heat transported outside the very hot areas can be neglected; the 
230°C isotherm serves as a convenient boundary defining the limits of the 
hydrothermally-active zone (C. J. Banwell, pers. comm.). The rate of vertical 
heat transport across the plane is then approximately (cp), (T, - To) U, A g cal/sec, 
where A is the area bounded by the 230°C isotherm and the suffix 1 indicates 
values of the parameters within that area. From (8), 

U, = (k,ga/v,)  (T, - To)/To cmlsec. 

Now, taking T, - To = 225" gives a(T, - To)/To x 0.2, vl M 1.4 x loe3 cmz/sec and 
(cp), z 0.9. The area A is known with less accuracy, but the area bounded by the 
230 "C isotherm and the cross-hatched lines in figure 6 (a)  is 2 km2. A reasonable 
value for the total area would be about 5 km2. Substituting these values gives 

and U, x 1.5 x cmlsec. 

From these results, the total rate of upflow of water p1 U, A is about 600 kg/sec, 
which may be compared with the measured outflow of about 430 kg/sec at the 
surface (Thompson et al. 1961). Thus the values of k, and U, appear to be of the 
correct orders of magnitude. 

Outside the heated region, the value of k may increase considerably, perhaps 
by one or more orders of magnitude (J. Healy and G. W. Grindley, pers. comm.). 
This effect could arise because chemical deposition occurs within the geothermally 
active region, leading to cementing of the fractured material. 

Measurements of thermal diffusivity near the surface give a value of about 
0-0025cm2/sec for saturated ground (Thompson et al. 1961). To allow for the 
effect of soil compaction, a value of K x 0.003 cmP/sec will be chosen to apply at  
depths greater than 400 m, where it is assumed that little steam is present. 

k,  x 10-10cm2 (i.e. 0.01 darcy) 

The steady-state mixing-layer model 
For the calculation of temperature and flow rate within the postulated vertical 
mixing layer, it is convenient to use the von Mises equations (14) with boundary 
conditions (12), taking Uo = 0. With the approximate values of U, and K given 
above, the P6clet number based upon pore size is O(10-2s), where s is the length 
scale of the pores or small fissures. If s does not exceed the order of 100 cm, it is 
sufficiently accurate to take K~ = K for the transverse diffusivity, as assumed 
previously. 

The variation of kinematic viscosity of water with temperature can be repre- 
sented approximately by the empirical formula (Wooding 1957) 

(31) I v/vo = (1 + aO)-l, 

where 8 = (T-To)/(Tl-To) and a = (T1-T0)/(T0-260). 

However, since the variation of permeability with temperature is only known 
qualitatively, it is convenient to assume that k is a function of temperature alone, 
and to write for the quantity g the one-parameter formula 

0- = - 0 = (1 +bB)-1, vlv ko 
(31') 
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where b = a if the permeability is constant. Then the case b = 0 implies that 
k cc v (including the case of constant k and v). 

From (8), the equation of motion is 

CTU = (k,ga/vo) (T - T,)/To == C T ~  U16, 

7 = -+/(4Ku12)+ 

(32) 

where crl = l/( 1 + b) .  If a similarity solution involviiig the variable transforma- 
tion 

is assumed to exist, the partial differential equation in (14) becomes an ordinary 

. equation; from (14), 

(33) 

after elimination of u and IY. (The form of (31’) is such that 6, or uu, becomes the 
most convenient dependent variable.) Since U, = 0, the stream-function + must 
tend to a limit as y + m. Let the corresponding limit for the independent 
variable 7 be -yo, where T,J~ > 0. Then the boundary conditions upon (33) can 
be written 

B(- ’ z lo )  = 0, B(0O) = 1, 

together with an additional requirement that the solution of (33) should be of 
the correct asymptotic form as y + co, or 7 --f - qo. 

In  the neighbourhood of 7 = -q0, a series expansion of Blasius type for 6 in 
powers of 7 + 7o with leading term 2q0( 1 + b )  (7 + q0) is found to be appropriate, 
since this gives the correct asymptotic expression 

6 - exp { - 2y0( U1/4KX)+ y} (34) 

as y --f 00. Physically, while 6 and hence the vertical component of the flow rate 
vanish exponentially, a slow horizontal entrainment inflow we persists, balancing 
the effect of transverse thermal diffusion. From the definition of 7, it is readily 
found that 

ve  -!Io(KU1/4+. 

When 7 + co (y + - m), the asymptotic solution is 

and 

( 3 5 )  

The series expansion near 7 = -lo is found to be of little value when b is 
large. However, equations (33) can be solved numerically, treating ro as a con- 
stant to be determined; it is found useful to introduce the transformations 

c = b( 1 + b )  v;, 
so that the series becomes 

0 = O / (  1 + b )  7; and X = (7 + yo)/v0, 

X2 x3 

2!  3! 
@ = 2X - (1 + 4 ~ )  - + +.( 1 + 4 ~ )  (1 + 3 6 ~ ) - -  . . . , (37) 
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which is valid as X --f 0. For a suitably chosen value of c, the transformed version 
of the differential equation in (33) is then integrated by the Runge-Kutta method, 
starting from a small value of X and using (37) to provide starting values of 0 
and d O / d X .  The step length of the numerical process is initially taken very small, 
but is increased as X increases. At large X ,  the solution tends to the limit 
@(a) = l/r& thus determining yo. The integral in (33) is also evaluated- 
numerically. 

In  figure 7, values of vo are plotted as a function of b. When b + 1,  the flow is 
dominated by the fact that water at the low temperature To is much more viscous 
than water at  the high temperature TI. The parameter yo has a low value in (34) 

0 2 4 6 8 10 

b 

FIGURE 7.  Values of T~ for different values of the parameter b, from the 
numerical solution of the mixing-layer equations (33). 

and (35), so that the mixing layer is wide. When b is small, the greater permeability 
in the region at temperature To largely counteracts the effect of the viscosity 
variation (k/k0 z v/vo) and the entrainment flow v, is increased, thus reducing 
the width of the mixing zone. 

Comparison with temperature measurements 

Measurements have been made of temperature us distance along the lines of 
intersection, A and B, of the horizontal cross-section in figure 6 ( a )  with the 
vertical cross-sections of 6 (b )  and (c), and values of 6' = (T-To)/(Tl-To) cal- 
culated from these measurements are plotted in figure 8. Here it is assumed that 
the upper and lower temperature limits are 240" and 10 "C. Since the tempera- 
ture distribution in the region above 200 "C is rather irregular, the upper limit is 
not well defined. However, a reliable lower limit can be determined from tem- 
perature measurements in ' cold ' bore-holes outside the hydrothermal region ; 
the closest, labelled ' 10' in figure 6(a), registers temperatures between 10" and 
11 "C from the surface to the maximum depth of about 250 m (G. E. K. Thompson, 
pers. comm.). 
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It is apparent from figure 8 that the two sets of temperature measurements 
are in very good agreement except at temperatures above 200 "C. This agreement 
may be fortuitous since, as indicated in figure 6 ( a ) ,  the isotherms intersected 
by line A are convex, while the isotherms intersected by line B are concave, 
towards the outer cold region. A two-dimensional theory should apply only 
roughly to the geophysical data. 

- 3  - 2  - 1  0 1 2 
I I I I 

I I I I 

I I 

(i) 

- 2  - 1  0 1 
(ii) 

(iii) 
- 1  0 

0.8 - 

0 6  - 

B 
0 4  - 

0.2 - 

ii 

(ii) 
(iii) 

0 1  I I I I I I I 
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150 
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50 

10°C 
-600 -400 -200 0 200 400 600 

Horizontal distance (m) 

FIGURE 8. Values of 0 = (T - To)/(T, - To) plotted vs horizontal distance from Banwell's 
(1957) results in figure 6; 0, values of B along line A; 0, values of 0 along line B. Also 
shown are the &profiles calculated numerically from (33) for models (i), (ii), and (iii) de- 
scribed in the text. The arbitrary origins of the horizontal scales have been adjusted to 
coincide at the point for which 19 = 0.5. 

Three mixing-layer models, calculated from (33) with parameter values 
(i) b = 10, (ii) b = 0 and (iii) b = - 0.677, have been fitted graphically to the data 
in figure 8. Since the numerical values for T' and To give a = 10 in formula (31) 
for the viscosity ratio, model (i) represents a porous medium of constant per- 
meability, while model (ii) represents a medium in which the permeability is 
proportional to the kinematic viscosity; the maximum permeability contrast is 
ko/kl = 11. In  model (iii), Ico/k, z 30. In  spite of these considerable physical 
differences, the three curves shown in figure 8 are remarkably similar in form. 
There is an indication that models (ii) and (iii) are better-fitted to  the data than 
is model (i), implying that a decrease of permeability occurs as the heated region 
is approached. 
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From the graphical fitting process used in figure 8, the scale unit (4~z/U,)* of 
each mixing-layer model is known in terms of actual physical distance. Then, 
if use is made of the numerical values previously assigned to the various physical 
parameters, the depth ~t: (=  L )  to the virtual source can be calculated. These 
results, together with values of entrainment flow w, calculated from (35), and the 
magnitudes of the Rayleigh numbers estimated from (16’) and (17‘), are given in 
table 3. In  the estimate of A’, the horizontal scale width 2d of the assumed broad- 
jet model is taken to be about 1 km, based upon an inspection of figure 6(a). 
It will be seen that the conditions (1 6) and (1 7) of 9 2 are satisfied by A and A’; 
also, from figure 8, it is evident that the broad-jet model provides a satisfactory 
fit to the geophysical data. (The plane-jet model (20) is found to provide a much 
poorer fit.) 

Model ... ... ... ... ... ( i )  (ii) (iii) 
Permeability ratio k,lk, 1 11 30 
Depth to virtual source: L (km) 8.8 10 20 
Entrainment flow rate: -0, (cmlsec) 1.1 x 1.3 x 10-7 1.4 x 10-7 

> 103 > 103 > 10s { W O )  W O )  O(10) 
Rayleigh numbers 

TABLE 3. Parameter values deduced for the Wairakei geothermal field using the three 
different mixing-layer models (i) b = 10 (constant permeability), (ii) b = 0 (permeability 
proportional to kinematic viscosity) and (iii) b = - 0.677 (permeability varying more 
rapidly than kinematic viscosity). 

As the properties of the actual source of hot fluid probably depart considerably 
from those of the assumed ideal source, the calculated values of L may be a great 
deal larger than the actual depth of the source. The actual depth is probably of 
the same order of magnitude as the depth of the volcanic deposits, found by 
Studt & Modriniak to be of the order of 3 km or greater. 

The time required for a given fluid particle to pass through the hydrothermal 
system is O(eL/U,), where the porosity 6 = O(l0-l). From the numerical values 
for the three mixing-layer models, the transit time probably lies between 200 
and 1000 years. This is in agreement with isotopic evidence (C. J. Banwell, 
pers. comm.) which indicates that the geothermal water has been out of contact 
with the atmosphere for more than 50 years, but less than lo4 years. 

It has been tacitly assumed in the above discussion that the hydrothermal 
system is in a steady, or quasi-steady, state. A simple calculation shows that the 
time constant for the mixing layer is 0(L2P/K) = O(L/U,) from (15)-in this 
case, a few thousand years. From petrological evidence (A. Xteiner and G. W. 
Grindley, pers. comm.), it is known that hydrothermal activity was present at  
Wairakei more than lo5 years ago, but it is not known whether the system has 
fluctuated considerably during that long period, or whether it has remained 
relatively steady. 

As a check upon the inflow to the postulated convective system, it has been 
noted that bore-holes drilled in cold areas at distances of order lOkm from 
Wairakei show an absence of vertical thermal gradient (F. E. Studt, pers. comm.). 
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This has been interpreted as a result of downflow of surface water, due to drainage 
into the hydrothermal region, and furnishes the best available evidence that the 
country surrounding the Wairakei system is permeable to ground water. The 
natural heat outflow from the earth is O( 10W) cal/cm2 see, and this usually gives 
rise to temperature gradients of order 30 "C/km (Jeffreys 1959, p. 298). If that 
heat flow is imagined to arise from a source at  a temperature of 1000°C at a 
depth of 30 km, a ground-water downflow rate of lo-' cm/sec would be sufficient 
to reduce the surface vertical gradient to less than l / l O O O  of its normal value. 
The temperature gradient would then not be detectable. It is interesting to  
note, from the values of v, in table 3, that the inflow due to entrainment into the 
hydrothermal jet could lead to a surface downflow approaching that order of 
magnitude. 

The author wishes to acknowledge the benefit of valuable discussions with 
Messrs C. J. Banwell, G. W. Grindley, F. E. Studt, A. Steiner, J. Healy and 
G. E. K. Thompson. Special thanks are due to Mr Banwell for permission to 
reproduce diagrams from a published paper, and to make use of certain un- 
published data. Numerical calculations were performed upon the IBM computer 
at the Treasury, Wellington, with the assistance of Mr E. W. Jones. 
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FIGURE 5. Analogue of a broad jet produced in a Helo-Shaw cell, with points calculated 
from (28) for the bounding streamline on tho assumption that the effect of mixing layers 
can be neglected. 
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